COMSOL Multiphysics弱形式入门 之二 弹性静力学PDE及其弹性能量方程 在静力结构分析问题中,我们需要求解的是Navier方程 其中σ是应力张量,F是体力,比如重力等。如果不习惯用张量的形式,你也可以将张量展开写成矩阵形式。这个方程表示了力(或者等效力)的平衡,实际上是三个方程的合并形式——3D中每个坐标方向有一个方程。 计算区域记为,其边界记为。 应力张量和应变张量之间的关系称为本构关系,线弹性本构一般遵循胡克HOOK定律
其中是弹性张量,这个关系式说明材料的行为实际上和弹簧差不多(前提是线弹性)。 最后,我们可以将应变矢量和位移的关系表述出来 这里u指的是位移矢量u=(u,v,w),其定义就是变形体上的材料点和未变形时候的位移差。 总结以上所有的方程,我们得到了一个二阶PDE方程(Navier方程), 需要一个边界条件来求解, 其中n是表面的法矢,P是边界上的面力或牵引力。后面会介绍更多边界条件。 这个PDE方程的弱形式为, 其中v=称为试函数。注意,尽管Navier方程是一个矢量表达式,但是上面的表达式是一个标量形式。下面介绍如何去推导以及理解弱形式。 弹性势能 在结构分析中,PDE方程及其弱形式的表达式都不太常见,相反,能量最小化形式因为其直观的表达形式用的较多。这类问题的能量积分形式对应于总势能的最小化,即对象中存储的弹性能。 总弹性能是一个标量,可以写成: 弹性能表达式同样适用于非线性问题。在这些表达式中,我们假设体力F为零,并忽略了边界效应。这些影响可以在以后引入。积分的意义是每个体积微元的内能总和,其中应力张量单位是Pa,微元体上的应变没有单位,dV单位是体积,因此积分出来的单位应该是N·m。 如果问题是线弹性的,则可以显式的写为: 利用下面的通用公式: 用应变张量替换上式中的标量变量,弹性张量替换上标量常量。 联立上面的式子得到: 我们用代替来配合COMSOL Multiphysics手册中的标记方式。再提醒一次,如果你不习惯用张量,可以将张量看成是一个3×3的矩阵,点乘是一种张量的运算符号,弹性张量是一个4阶张量(看上去就像4维矩阵)。更多的标记方法可以参考COMSOL Multiphysics 的Anisotropic Structural Analysis 中的Matrix Notation。 弹性能积分形式下的单位说明: 最终给出总的积分单位是N·m――能量。 的表达式就是我们通常说的能量泛函,即位移矢量u(或实际上是u的梯度)的泛函。这种函数的函数,而不是坐标的函数,通常被称为泛函,比单元微积分和多元微积分更加抽象。 与积分类似,我们可以说就是函数的泛函: 这好比是一个2D的变量x,y的二元函数: 其中x=,,。 采用这样的类比是因为在后面我们会看到矩阵A与有限元的刚度矩阵比较类似。 我们要说明一下函数和泛函的一些区别,古典分析中的函数概念是指两个数集之间所建立的一种对应关系,现代数学的发展却是要求建立两个任意集合之间的某种对应关系。函数概念被赋予了更为一般的意义,通俗解释泛函指的就是“函数的函数”。在这里定义域为,泛函可以在整个定义域内进行微分积分等操作。 泛函的变量是函数,这个函数也是有容许空间的。如果函数u可以变化,可能会产生一些不符合物理规则的一些现象,例如结构的刚性位移等。比如一个对u的基本约束就是材料不能穿越本身。 在有限元分析中,泛函一般是某种能量积分,比如弹性能。对于其他的物理场,可能是其他的能量积分,或者是一种等效于能量的标量也可以。至于积分区域,一般由分析对象的CAD几何区域所确定。 |
分享到
豆瓣网
开心网
人人网
QQ书签
Google
5490个朋友已经阅读过这篇文章
用户评论
没有找到数据. , |