非线性特征值问题 求解方程的特征值是仿真中经常碰到的一类问题。问题线性度比较好的时候,方程的系数与方程的解变量u不存在函数关系,这样的方程很容易解;反过来,方程特征值也很容易求。但是有时候我们会碰到非线性比较强的问题,方程的系数本身就是解变量u的函数。对于正问题,COMSOL很容易“求解域设定”中,定义方程的某些系数是解变量的函数,然后利用COMSOL提供的非线性求解器完成求解。但是对于非线性很强的逆问题又该如何定义呢?这里有一个很好用的技巧,就是使用全局约束对特征值先进行一下归一化,在这里定义特征值与解变量相关。 例如PDE方程 ,其中l即为特征值(下图中的Lambda)。我们可以先添加全局约束,定义E=1,而E其实是一个积分耦合变量,对应于解变量u2在求解域上的积分。通过这样操作,我们就把Lambda和解变量u建立的联系,然后使用COMSOL提供的非线性求解器完成求解。 |
分享到
豆瓣网
开心网
人人网
QQ书签
Google
7142个朋友已经阅读过这篇文章
用户评论
没有找到数据. , |